login
A262719
a(n) is the smallest nonnegative k such that there is no 3 X 3 matrix with entries in {1,...,n} whose determinant is k.
1
1, 6, 21, 55, 110, 203, 357, 544, 808, 1177, 1670, 2215, 2865, 3599, 4558, 5621, 6637, 8041, 9769, 11413, 13394, 15593, 17683, 20317, 23249, 26063, 29506, 33287, 37461, 41692, 46306, 50707, 55667, 61723, 67547, 73939, 80767, 87941, 94913, 101613, 111422
OFFSET
1,2
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..50
EXAMPLE
For n=1, the only matrix is the matrix of all 1s, which has determinant 0. Hence, a(1)=1.
PROG
(Python)
from itertools import product, groupby, count
.
def det(m):
...a, b, c, d, e, f, g, h, i = m
...return abs(a*(e*i-f*h)-b*(d*i-f*g)+c*(d*h-e*g))
.
def a262719(n):
...s = list(product(range(1, n+1), repeat=9))
...i = 0
...for k, ms in groupby(sorted(s, key=det), key=det):
......if k!=i:
.........return i
......i += 1
...return i
CROSSREFS
Sequence in context: A067680 A115052 A025203 * A238702 A162539 A259474
KEYWORD
nonn
AUTHOR
Christian Perfect, Sep 28 2015
EXTENSIONS
a(7)-a(41) from Hiroaki Yamanouchi, Oct 17 2015
STATUS
approved