login
A262490
The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of four consecutive positive triangular numbers.
4
9, 57, 337, 1969, 11481, 66921, 390049, 2273377, 13250217, 77227929, 450117361, 2623476241, 15290740089, 89120964297, 519435045697, 3027489309889, 17645500813641, 102845515571961, 599427592618129, 3493720040136817, 20362892648202777, 118683635849079849
OFFSET
1,1
COMMENTS
For the index of the first of the corresponding four consecutive triangular numbers, see A202391.
FORMULA
a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>3.
G.f.: -x*(x-3)^2 / ((x-1)*(x^2-6*x+1)).
a(n) = -1+(1-1/sqrt(2))*(3-2*sqrt(2))^n+(1+1/sqrt(2))*(3+2*sqrt(2))^n. - Colin Barker, Mar 05 2016
EXAMPLE
9 is in the sequence because T(9)+T(10) = 45+55 = 100 = 15+21+28+36 = T(5)+T(6)+T(7)+T(8), where T(k) is the k-th triangular number.
PROG
(PARI) Vec(-x*(x-3)^2/((x-1)*(x^2-6*x+1)) + O(x^30))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 24 2015
STATUS
approved