OFFSET
1,1
COMMENTS
For the index of the first of the corresponding thirteen consecutive triangular numbers, see A257293.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,102,-102,0,0,-1,1).
FORMULA
G.f.: -x*(12*x^8+13*x^6+65*x^5-1107*x^4+910*x^3+117*x^2+65*x+25) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)).
EXAMPLE
25 is in the sequence because T(25)+T(26) = 325+351 = 676 = 6+...+120 = T(3)+...+T(15), where T(k) is the k-th triangular number.
PROG
(PARI) Vec(-x*(12*x^8+13*x^6+65*x^5-1107*x^4+910*x^3+117*x^2+65*x+25)/((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^30))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 24 2015
STATUS
approved