login
A262492
The index of the first of two consecutive positive triangular numbers (A000217) the sum of which is equal to the sum of thirteen consecutive positive triangular numbers.
4
25, 90, 207, 1117, 2560, 9255, 21202, 114022, 261195, 944020, 2162497, 11629227, 26639430, 96280885, 220553592, 1186067232, 2716960765, 9819706350, 22494303987, 120967228537, 277103358700, 1001513766915, 2294198453182, 12337471243642, 28261825626735
OFFSET
1,1
COMMENTS
For the index of the first of the corresponding thirteen consecutive triangular numbers, see A257293.
FORMULA
G.f.: -x*(12*x^8+13*x^6+65*x^5-1107*x^4+910*x^3+117*x^2+65*x+25) / ((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)).
EXAMPLE
25 is in the sequence because T(25)+T(26) = 325+351 = 676 = 6+...+120 = T(3)+...+T(15), where T(k) is the k-th triangular number.
PROG
(PARI) Vec(-x*(12*x^8+13*x^6+65*x^5-1107*x^4+910*x^3+117*x^2+65*x+25)/((x-1)*(x^4-10*x^2-1)*(x^4+10*x^2-1)) + O(x^30))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 24 2015
STATUS
approved