login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261623
Decimal expansion of the Dirichlet beta function at 1/4.
3
5, 9, 0, 7, 2, 3, 0, 5, 6, 4, 4, 2, 4, 9, 4, 7, 3, 1, 8, 6, 5, 9, 5, 9, 1, 5, 3, 5, 1, 1, 5, 6, 2, 0, 5, 9, 7, 9, 8, 3, 6, 7, 4, 1, 7, 2, 3, 9, 1, 1, 4, 4, 0, 0, 8, 2, 7, 7, 1, 8, 7, 6, 5, 9, 3, 0, 0, 5, 8, 3, 1, 8, 2, 0, 6, 6, 4, 5, 9, 6, 0, 9, 6, 9, 2, 8, 7, 7, 2, 6, 1, 3, 4, 1, 4, 2, 0, 1, 1, 7, 3, 9, 4
OFFSET
0,1
LINKS
Eric Weisstein's MathWorld, Dirichlet Beta Function
FORMULA
beta(1/4) = (zeta(1/4, 1/4) - zeta(1/4, 3/4))/sqrt(2).
EXAMPLE
0.59072305644249473186595915351156205979836741723911440082771876593...
MAPLE
evalf(Sum((-1)^n/(2*n+1)^(1/4), n=0..infinity), 120); # Vaclav Kotesovec, Aug 27 2015
MATHEMATICA
RealDigits[DirichletBeta[1/4], 10, 103]//First
PROG
(PARI) beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x
beta(1/4) \\ Charles R Greathouse IV, Oct 18 2024
CROSSREFS
Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A261622 (beta(1/3)), A261624 (beta(1/5)).
Sequence in context: A277651 A096789 A342714 * A298515 A306778 A019705
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved