login
A175571
Decimal expansion of the Dirichlet beta function of 5.
14
9, 9, 6, 1, 5, 7, 8, 2, 8, 0, 7, 7, 0, 8, 8, 0, 6, 4, 0, 0, 6, 3, 1, 9, 3, 6, 8, 6, 3, 0, 9, 7, 5, 2, 8, 1, 5, 1, 1, 3, 9, 5, 5, 2, 9, 3, 8, 8, 2, 6, 4, 9, 4, 3, 2, 0, 7, 9, 8, 3, 2, 1, 5, 1, 2, 4, 4, 6, 2, 8, 6, 5, 0, 1, 8, 2, 7, 4, 8, 1, 9, 2, 8, 9, 6, 5, 9, 8, 3, 2, 2, 7, 0, 5, 2, 4, 4, 7, 5, 5, 9, 9, 0, 8, 0
OFFSET
0,1
COMMENTS
The value of the Dirichlet L-series L(m=4,r=2,s=4), see arXiv:1008.2547.
REFERENCES
L. B. W. Jolley, Summation of Series, Dover, 1961, eq. 308.
LINKS
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Eric Weisstein's World of Mathematics, Dirichlet Beta Function.
FORMULA
Equals 5*Pi^5/1536 = Sum_{n>=1} A101455(n)/n^5, where Pi^5 = A092731. [corrected by R. J. Mathar, Feb 01 2018]
Equals Sum_{n>=0} (-1)^n/(2*n+1)^5. - Jean-François Alcover, Mar 29 2013
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^5)^(-1). - Amiram Eldar, Nov 06 2023
EXAMPLE
0.99615782807708806400631936...
MAPLE
DirichletBeta := proc(s) 4^(-s)*(Zeta(0, s, 1/4)-Zeta(0, s, 3/4)) ; end proc: x := DirichletBeta(5) ; x := evalf(x) ;
MATHEMATICA
RealDigits[ DirichletBeta[5], 10, 105] // First (* Jean-François Alcover, Feb 20 2013, updated Mar 14 2018 *)
PROG
(PARI) 5*Pi^5/1536 \\ Charles R Greathouse IV, Jan 31 2018
(PARI) beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x
beta(5) \\ Charles R Greathouse IV, Jan 31 2018
CROSSREFS
Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A101455.
Sequence in context: A340222 A021505 A346930 * A019894 A347150 A346850
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Jul 15 2010
STATUS
approved