login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175572 Decimal expansion of the Dirichlet beta function of 4. 10
9, 8, 8, 9, 4, 4, 5, 5, 1, 7, 4, 1, 1, 0, 5, 3, 3, 6, 1, 0, 8, 4, 2, 2, 6, 3, 3, 2, 2, 8, 3, 7, 7, 8, 2, 1, 3, 1, 5, 8, 6, 0, 8, 8, 7, 0, 6, 2, 7, 3, 3, 9, 1, 0, 7, 8, 1, 9, 9, 2, 4, 0, 1, 6, 3, 9, 0, 1, 5, 1, 9, 4, 6, 9, 8, 0, 1, 8, 1, 9, 6, 4, 1, 1, 9, 1, 0, 4, 6, 8, 9, 9, 9, 7, 9, 9, 9, 3, 3, 7, 8, 5, 6, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the value of the Dirichlet L-series for A101455 at s=4, see arXiv:1008.2547, L(m=4,r=2,s=4).

REFERENCES

L. B. W. Jolley, Summation of Series, Dover (1961) eq (308).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.

Wikipedia, Dirichlet beta function

FORMULA

Equals Sum_{n>=1} A101455(n)/n^4. [corrected by R. J. Mathar, Feb 01 2018]

Also equals (PolyGamma(3, 1/4) - PolyGamma(3, 3/4))/1536. - Jean-François Alcover, Jun 11 2015

EXAMPLE

0.988944551741105336108422633...

MAPLE

DirichletBeta := proc(s) 4^(-s)*(Zeta(0, s, 1/4)-Zeta(0, s, 3/4)) ; end proc: x := DirichletBeta(4) ; x := evalf(x) ;

MATHEMATICA

RealDigits[ DirichletBeta[4], 10, 105] // First (* Jean-François Alcover, Feb 11 2013, updated Mar 14 2018 *)

PROG

(PARI) beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x

beta(4) \\ Charles R Greathouse IV, Jan 31 2018

CROSSREFS

Cf. A003881 (at 1), A006752 (at 2), A153071 (at 3).

Sequence in context: A195477 A157680 A011228 * A263984 A021095 A090998

Adjacent sequences:  A175569 A175570 A175571 * A175573 A175574 A175575

KEYWORD

cons,easy,nonn,changed

AUTHOR

R. J. Mathar, Jul 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 19 18:54 EDT 2018. Contains 302748 sequences. (Running on oeis4.)