login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175572 Decimal expansion of the Dirichlet beta function of 4. 7
9, 8, 8, 9, 4, 4, 5, 5, 1, 7, 4, 1, 1, 0, 5, 3, 3, 6, 1, 0, 8, 4, 2, 2, 6, 3, 3, 2, 2, 8, 3, 7, 7, 8, 2, 1, 3, 1, 5, 8, 6, 0, 8, 8, 7, 0, 6, 2, 7, 3, 3, 9, 1, 0, 7, 8, 1, 9, 9, 2, 4, 0, 1, 6, 3, 9, 0, 1, 5, 1, 9, 4, 6, 9, 8, 0, 1, 8, 1, 9, 6, 4, 1, 1, 9, 1, 0, 4, 6, 8, 9, 9, 9, 7, 9, 9, 9, 3, 3, 7, 8, 5, 6, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The beta function of arguments 1 to 3 are A003881, A006752 and A153071.

This is the value of the Dirichlet L-series for A101455 at s=4, see arXiv:1008.2547, L(m=4,r=2,s=4).

REFERENCES

L. B. W. Jolley, Summation of Series, Dover (1961) eq (308).

LINKS

Table of n, a(n) for n=0..104.

Wikipedia, Dirichlet beta function

FORMULA

Equals sum_{n>=1} 1/A101455(n)^4.

Also equals (PolyGamma(3, 1/4) - PolyGamma(3, 3/4))/1536. - Jean-François Alcover, Jun 11 2015

EXAMPLE

0.988944551741105336108422633...

MAPLE

DirichletBeta := proc(s) 4^(-s)*(Zeta(0, s, 1/4)-Zeta(0, s, 3/4)) ; end proc: x := DirichletBeta(4) ; x := evalf(x) ;

MATHEMATICA

DirichletBeta[x_] := (Zeta[x, 1/4] - Zeta[x, 3/4])/4^x; RealDigits[ DirichletBeta[4], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

CROSSREFS

Sequence in context: A195477 A157680 A011228 * A263984 A021095 A090998

Adjacent sequences:  A175569 A175570 A175571 * A175573 A175574 A175575

KEYWORD

cons,easy,nonn

AUTHOR

R. J. Mathar, Jul 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 06:50 EST 2016. Contains 278902 sequences.