login
A261228
a(n) = number of steps to reach 0 when starting from k = (n^3)-1 and repeatedly applying the map that replaces k with k - A055401(k), where A055401(k) = the number of positive cubes needed to sum to k using the greedy algorithm.
9
0, 1, 4, 10, 19, 33, 52, 77, 108, 146, 190, 244, 306, 377, 458, 549, 652, 767, 896, 1038, 1195, 1367, 1554, 1757, 1978, 2216, 2472, 2746, 3040, 3353, 3688, 4045, 4423, 4823, 5247, 5696, 6169, 6668, 7193, 7745, 8324, 8933, 9570, 10236, 10934, 11663, 12423, 13215, 14042, 14902, 15797, 16726, 17693, 18695, 19734, 20811, 21928, 23083, 24278, 25513
OFFSET
1,3
LINKS
FORMULA
a(1) = 0; for n > 1, a(n) = A261229(n-1) + a(n-1).
a(n) = A261226((n^3)-1).
PROG
(Scheme, two variants, the first one using definec-macro)
(definec (A261228 n) (if (= 1 n) 0 (+ (A261229 (- n 1)) (A261228 (- n 1)))))
(define (A261228 n) (A261226 (- (* n n n) 1)))
CROSSREFS
One less than A261227.
First differences: A261229.
Cf. also A261223.
Sequence in context: A102534 A093111 A009857 * A173154 A008126 A301129
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 16 2015
STATUS
approved