login
A261227
a(n) = number of steps to reach 0 when starting from k = n^3 and repeatedly applying the map that replaces k with k - A055401(k), where A055401(k) = the number of positive cubes needed to sum to k using the greedy algorithm.
8
0, 1, 2, 5, 11, 20, 34, 53, 78, 109, 147, 191, 245, 307, 378, 459, 550, 653, 768, 897, 1039, 1196, 1368, 1555, 1758, 1979, 2217, 2473, 2747, 3041, 3354, 3689, 4046, 4424, 4824, 5248, 5697, 6170, 6669, 7194, 7746, 8325, 8934, 9571, 10237, 10935, 11664, 12424, 13216, 14043, 14903, 15798, 16727, 17694, 18696, 19735, 20812, 21929, 23084, 24279, 25514
OFFSET
0,3
LINKS
FORMULA
a(0) = 0, a(1) = 1; for n >= 2, a(n) = A261229(n-1) + a(n-1).
a(n) = A261226(n^3).
PROG
(Scheme, two variants, the first one using definec-macro)
(definec (A261227 n) (if (<= n 1) n (+ (A261229 (- n 1)) (A261227 (- n 1)))))
(define (A261227 n) (A261226 (* n n n)))
CROSSREFS
Essentially one more than A261228.
First differences: A261229.
Cf. also A261222.
Sequence in context: A093871 A139482 A038377 * A022908 A256310 A026390
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 16 2015
STATUS
approved