login
A261091
a(n) = number of steps required to reach F(n+1)-1 from F(n+2)-1 by repeatedly subtracting from a natural number the number of ones in its Zeckendorf representation. Here F(n) = the n-th Fibonacci number, F(0) = 0, F(1) = 1, F(2) = 1, F(3) = 2, ...
7
0, 1, 1, 1, 2, 2, 3, 5, 8, 11, 17, 25, 37, 56, 85, 130, 199, 305, 469, 723, 1118, 1733, 2693, 4193, 6539, 10211, 15962, 24974, 39103, 61262, 96030, 150608, 236338, 371101, 583118, 916978, 1443204, 2273434, 3584522, 5656786, 8934696, 14123156, 22340250
OFFSET
0,5
FORMULA
a(n) = A219642(A000071(n+2)) - A219642(A000071(n+1)). [By definition.]
a(n) = A219642(A000045(n+2)) - A219642(A000045(n+1)). [Equally.]
PROG
(Scheme) (define (A261091 n) (let ((end (- (A000045 (+ 1 n)) 1))) (let loop ((k (- (A000045 (+ 2 n)) 1)) (s 0)) (if (= k end) s (loop (A219641 k) (+ 1 s))))))
CROSSREFS
From a(1) onward the first differences of both A261081 and A261082.
Cf. A261090 (first differences of this sequence).
Cf. also A261102, A261076.
Sequence in context: A076777 A240210 A111123 * A179523 A087729 A039890
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 08 2015
STATUS
approved