login
A261092
First differences of A261093; characteristic function for A219640.
4
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0
OFFSET
0
COMMENTS
a(n) = number of ways to express n as a sum of nonzero terms of A000071 in such a way that no term is used twice, and no two consecutive terms are used at the same time. For 0 we have one solution, an empty sum, thus a(0) = 1.
LINKS
FORMULA
a(0) = 1; a(n) = A261093(n) - A261093(n-1).
PROG
(Scheme) (define (A261092 n) (if (zero? n) 1 (- (A261093 n) (A261093 (- n 1)))))
CROSSREFS
Cf. also A079559, A230412 (analogous sequences for other bases), A000071.
Sequence in context: A343159 A155091 A145362 * A285960 A174600 A265186
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 08 2015
STATUS
approved