login
A258545
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum equal to the central column sum
9
220, 784, 784, 2520, 2916, 2520, 8100, 8836, 8836, 8100, 25056, 27889, 20736, 27889, 25056, 77284, 81796, 57600, 57600, 81796, 77284, 234848, 241081, 142544, 161604, 142544, 241081, 234848, 712336, 682276, 381924, 367236, 367236, 381924, 682276
OFFSET
1,1
COMMENTS
Table starts
.....220......784.....2520.....8100....25056.....77284....234848....712336
.....784.....2916.....8836....27889....81796....241081....682276...1915456
....2520.....8836....20736....57600...142544....381924....956736...2496400
....8100....27889....57600...161604...367236....996004...2414916...6441444
...25056....81796...142544...367236...726880...1784896...3826716...9302500
...77284...241081...381924...996004..1784896...4359744...8773444..21372129
..234848...682276...956736..2414916..3826716...8773444..15444224..34739236
..712336..1915456..2496400..6441444..9302500..21372129..34739236..78039556
.2148108..5262436..6344576.16224784.21443688..47499664..68785192.145154304
.6471936.14341369.16467364.42954916.53027524.118113424.159314884.335292721
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-1) -32*a(n-3) +34*a(n-4) +54*a(n-5) -96*a(n-6) +63*a(n-8) -27*a(n-9)
k=2: [order 42] for n>44
k=3: [order 23] for n>26
k=4: [order 47] for n>48
k=5: [order 24] for n>27
k=6: [same order 47] for n>49
k=7: [same order 24] for n>27
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1..1..1....1..0..1..1..0..0....0..1..0..1..0..0....0..0..0..0..0..0
..1..1..1..0..1..0....1..1..1..1..0..1....0..1..0..1..0..0....0..0..1..0..0..0
..0..0..1..0..1..1....0..0..0..1..0..1....0..1..0..1..0..0....1..0..1..0..1..0
..1..1..1..0..1..1....1..1..1..1..0..1....0..1..0..1..0..1....0..0..1..0..1..0
..0..0..1..0..1..1....0..0..0..1..1..1....0..0..0..0..0..0....1..0..1..0..1..0
..0..1..1..0..1..1....0..1..1..1..0..1....0..0..1..0..1..0....0..0..1..1..1..1
CROSSREFS
Sequence in context: A234558 A211816 A135807 * A257361 A258538 A257354
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 02 2015
STATUS
approved