login
A257361
T(n,k) = Number of (n+2) X (k+2) 0..1 arrays with no 3 X 3 subblock diagonal sum equal to the antidiagonal sum or central row sum less than the central column sum.
9
220, 784, 784, 3108, 2116, 3108, 12100, 6724, 6724, 12100, 45684, 20449, 17056, 20449, 45684, 174724, 53824, 45796, 45796, 53824, 174724, 674856, 145924, 112236, 101124, 112236, 145924, 674856, 2585664, 451584, 234256, 246016, 246016, 234256
OFFSET
1,1
COMMENTS
Table starts
......220......784....3108....12100....45684...174724....674856...2585664
......784.....2116....6724....20449....53824...145924....451584...1368900
.....3108.....6724...17056....45796...112236...234256....475608...1136356
....12100....20449...45796...101124...246016...622521...1249924...2598544
....45684....53824..112236...246016...482560..1196836...2980712...6240004
...174724...145924..234256...622521..1196836..2433600...6012304..15547249
...674856...451584..475608..1249924..2980712..6012304..12278736..30603024
..2585664..1368900.1136356..2598544..6240004.15547249..30603024..62948356
..9853288..3724900.2763008..6200100.12771684.31606884..76329692.155201764
.37724164.10240000.5914624.15225604.30294016.64818601.159516900.397763136
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 16],
k=2: [order 66] for n>68,
k=3: [order 36] for n>39,
k=4: [order 42] for n>46,
k=5: [same order 36] for n>41,
k=6: [same order 42] for n>48,
k=7: [same order 36] for n>43.
EXAMPLE
Some solutions for n=4, k=4
..1..0..0..0..1..1....0..0..0..0..1..0....1..1..0..0..1..1....1..1..0..0..1..1
..1..1..0..1..1..1....1..0..0..1..0..0....1..1..0..1..1..0....1..1..0..0..1..1
..1..0..1..1..0..1....0..1..1..0..0..1....1..0..1..1..0..1....1..0..1..1..0..0
..0..1..1..0..0..1....0..1..1..0..0..1....0..1..1..0..0..0....1..1..1..1..0..1
..1..1..0..0..1..1....1..0..0..1..1..0....1..1..0..0..0..1....0..1..1..0..1..0
..1..0..0..1..1..1....0..0..0..0..1..0....1..0..0..0..0..1....1..0..0..1..0..0
CROSSREFS
Sequence in context: A211816 A135807 A258545 * A258538 A257354 A102073
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 20 2015
STATUS
approved