login
A258548
Number of (n+1) X (2+1) 0..1 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
1
44, 112, 296, 652, 1329, 2530, 4667, 8419, 14932, 26184, 45561, 78903, 136170, 234461, 403075, 692272, 1188185, 2038466, 3496239, 5995441, 10279967, 17625041, 30216773, 51802782, 88807568, 152244537, 260993810, 447421309, 767011467
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 3*a(n-4) - 4*a(n-5) + 2*a(n-6) + 2*a(n-7) - 3*a(n-8) + a(n-9) for n>11.
Empirical g.f.: x*(44 - 64*x + 68*x^2 - 16*x^3 - 43*x^4 + 18*x^5 + 12*x^6 - 12*x^7 - 2*x^8 + 6*x^9 - x^10) / ((1 - x)^3*(1 - x - x^2 - x^4 + x^6)). - Colin Barker, Dec 21 2018
EXAMPLE
Some solutions for n=4:
..0..0..1....1..1..1....0..0..0....0..0..1....0..0..1....0..0..0....1..0..0
..0..0..0....0..0..0....1..1..1....1..0..1....1..0..1....0..0..1....0..0..0
..1..0..1....1..1..1....0..0..0....1..0..1....1..0..1....0..0..1....1..1..0
..1..0..1....1..0..0....1..1..1....0..0..1....1..0..1....1..1..1....1..0..0
..0..0..1....1..1..1....1..0..1....1..1..1....0..1..1....1..1..0....1..1..1
CROSSREFS
Column 2 of A258554.
Sequence in context: A044231 A044612 A258555 * A036198 A094128 A340178
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 03 2015
STATUS
approved