OFFSET
0,1
LINKS
Asaithambi Asai, Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients, J. Comput. Appl. Math. 176 (2005), 203-214.
Heinrich Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. u. Physik 56 (1908), 1-37.
Heinrich Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. u. Physik 56 (1908), 1-37 [English translation by J. Vanier on behalf of the National Advisory Committee for Aeronautics (NACA), 1950].
John P. Boyd, The Blasius function in the complex plane, Experimental Mathematics 8(4) (1999), 381-394.
Stephen Childress, An Introduction to Theoretical Fluid Dynamics, p. 124.
V. P. Varin, A solution to Blasius problem, Computational Mathematics and Mathematical Physics 54(6) (2014), 1025-1036. [The author gives rational approximations to the constant.]
Wikipedia, Blasius boundary layer.
FORMULA
b = g'(oo)^(-3/2) where g is the solution to the o.d.e. (1/2)*g*g'' + g''' = 0, with g(0) = g'(0) = 0 and g''(0) = 1 (a variant of the Blasius equation (1/2)*f*f'' + f''' = 0).
EXAMPLE
0.332057336215196298937180062010582966547093561412679818100447564...
MATHEMATICA
m = 24; digits = 100; g = NDSolveValue[1/2*G[eta]*G''[eta] + G'''[eta] == 0 && G[0] == 0 && G'[0] == 0 && G''[0] == 1, G, {eta, 0, m}, WorkingPrecision -> 2 digits, Method -> "StiffnessSwitching"]; b = g'[m]^(-3/2); RealDigits[b, 10, digits][[1]] (* updated Sep 18 2016 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Apr 01 2015
EXTENSIONS
Extended to 100 digits by Jon E. Schoenfield (private email) then confirmed with Mathematica by Jean-François Alcover, Sep 18 2016
STATUS
approved