login
A256519
Composites c for which an integer 1 < k < c exists such that (c-k)! == -1 (mod c).
2
25, 121, 169, 437, 551, 667, 721, 1037, 1159, 1273, 1349, 1403, 1541, 1769, 1943, 2209, 2329, 2363, 2419, 3071, 3713, 4087, 5041, 5111, 7313, 8357, 8479, 9017, 11357, 11983, 12673, 16117, 16343, 19043, 19099, 19879
OFFSET
1,1
COMMENTS
The 1 < k part of the condition in the definition is implied by Wilson's theorem.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..719
EXAMPLE
c = 25 satisfies the congruence with k = 21, since ((25-21)!+1) mod 25 = 0, so 25 is a term of the sequence.
PROG
(PARI) forcomposite(c=1, , for(k=1, c-1, if(Mod((c-k)!, c)==-1, print1(c, ", "); break({1}))))
(PARI) is(n)=if(isprime(n), return(0)); my(m=Mod(6, n)); for(k=4, n, m*=k; if(m==-1, return(1)); if(gcd(m, n)!=1, return(0))) \\ Charles R Greathouse IV, Apr 02 2015
CROSSREFS
Sequence in context: A083509 A343075 A339130 * A298009 A213445 A363190
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Apr 01 2015
EXTENSIONS
a(25)-a(36) from Charles R Greathouse IV, Apr 02 2015
STATUS
approved