login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256450 Numbers that have at least one 1-digit in their factorial base representation (A007623). 36
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 95, 97, 98, 99, 101 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Numbers n for which A257679(n) = 1, i.e., numbers n such that the least nonzero digit in their factorial base representation (A007623) is 1.

Involution A225901 maps each term of this sequence to a unique term of A273670, and vice versa.

Starting offset is zero (with a(0) = 1) because it is the most natural offset for the given fast recurrence.

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10000

Index entries for sequences related to factorial base representation

FORMULA

a(0) = 1, and for n >= 1, if A257511(1+a(n-1)) > 0, then a(n) = a(n-1) + 1, otherwise a(n-1) + 2. [In particular, if the previous term is 2k, then the next term is 2k+1, because all odd numbers are members.]

Other identities:

For all n >= 0, A273662(a(n)) = n. [A273662 works as the left inverse for this sequence.]

From Antti Karttunen, May 26 2015: (Start)

Alternative recurrence for the same sequence:

Set k = A258198(n), d = n - A258199(n) and f = A000142(k+1) = (k+1)! If d < f then b(n) = f+d, otherwise b(n) = ((2+floor((d-f)/A258199(n))) * f) + b((d-f) mod A258199(n)). For offset=1 sequence, define a(n) = b(n-1).

(End)

MATHEMATICA

Select[Range@ 101, MemberQ[IntegerDigits[#, MixedRadix[Reverse@ Range@ 12]], 1] &] (* Michael De Vlieger, May 30 2016, Version 10.2 *)

r = MixedRadix[Reverse@ Range[2, 12]]; Select[Range@ 101, Min[IntegerDigits[#, r] /. 0 -> Nothing] == 1 &]  (* Michael De Vlieger, Aug 14 2016, Version 10.2 *)

PROG

(Scheme, with Antti Karttunen's IntSeq-library)

(define A256450 (NONZERO-POS 0 0 A257680))

;; Alternatively, as a naive recurrence:

(definec (A256450 n) (if (zero? n) 1 (let ((prev (A256450 (- n 1)))) (cond ((even? prev) (+ 1 prev)) ((> (A257511 (+ 1 prev)) 0) (+ 1 prev)) (else (+ 2 prev))))))

;; Faster recurrence May 26 2015:

(definec (A256450 n) (let* ((k (A258198 n)) (d (- n (A258199 n))) (f (A000142 (+ 1 k)))) (cond ((< d f) (+ f d)) (else (+ (* f (+ 2 (floor->exact (/ (- d f) (A258199 n))))) (A256450 (modulo (- d f) (A258199 n))))))))

(Python)

def A(n, p=2): return n if n<p else A(int(n/p), p+1)*10 + n%p

print [n for n in xrange(1, 151) if str(A(n)).count("1")>=1] # Indranil Ghosh, Jun 19 2017

CROSSREFS

Cf. A007623, A257679.

Complement of A255411.

Cf. A257680 (characteristic function), A273662 (left inverse).

First row of A257503, first column of A257505.

Subsequences: A059590 (apart from its zero-term), A255341, A255342, A255343, A257262, A257263, A258198, A258199.

Cf. also A227187 (numbers with at least one nonleading zero) and A273670, A225901.

Sequence in context: A047588 A213257 A039213 * A119605 A144146 A284763

Adjacent sequences:  A256447 A256448 A256449 * A256451 A256452 A256453

KEYWORD

nonn,base

AUTHOR

Antti Karttunen, Apr 27 2015

EXTENSIONS

Starting offset changed from 1 to 0 by Antti Karttunen, May 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 23 15:54 EDT 2017. Contains 292361 sequences.