login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256341
Numbers which have only digits 8 and 9 in base 10.
9
8, 9, 88, 89, 98, 99, 888, 889, 898, 899, 988, 989, 998, 999, 8888, 8889, 8898, 8899, 8988, 8989, 8998, 8999, 9888, 9889, 9898, 9899, 9988, 9989, 9998, 9999, 88888, 88889, 88898, 88899, 88988, 88989, 88998, 88999, 89888, 89889
OFFSET
1,1
FORMULA
a(n) = A007931(n) + A002281(A000523(n+1)) = A256341(n) + A256077(n) etc.
MATHEMATICA
Flatten[Table[FromDigits[#, 10]&/@Tuples[{8, 9}, n], {n, 5}]]
PROG
(Magma) [n: n in [1..35000] | Set(IntegerToSequence(n, 10)) subset {8, 9}];
(PARI) A256341(n)=vector(#n=binary(n+1)[2..-1], i, 10^(#n-i))*n~+10^#n\9*8
(Magma) [n: n in [1..100000] | Set(Intseq(n)) subset {8, 9}]; // Vincenzo Librandi, Aug 19 2016
(Python)
def a(n): return int(bin(n+1)[3:].replace('0', '8').replace('1', '9'))
print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Aug 09 2021
CROSSREFS
Cf. A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5) - A256292 (digits 6 & 7), A256340 (digits 7 & 8).
Sequence in context: A195991 A304410 A248290 * A116249 A256162 A175556
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Mar 27 2015
STATUS
approved