login
A255914
Triangle read by rows: T(n,k) = A007318(n,k)*A238453(n,k).
0
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 8, 24, 8, 1, 1, 20, 80, 80, 20, 1, 1, 12, 120, 160, 120, 12, 1, 1, 42, 252, 840, 840, 252, 42, 1, 1, 32, 672, 1344, 3360, 1344, 672, 32, 1, 1, 54, 864, 6048, 9072, 9072, 6048, 864, 54, 1, 1, 40, 1080, 5760, 30240, 18144, 30240
OFFSET
0,5
COMMENTS
These are the generalized binomial coefficients associated with the sequence A002618.
LINKS
Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
FORMULA
T(n,k) = Product_{i=1..n} A002618(i)/(Product_{i=1..k} A002618(i)*Product_{i=1..n-k} A002618(i)).
T(n,k) = A002618(n)/n*(k/A002618(k)*T(n-1,k-1)+(n-k)/A002618(n-k)*T(n-1,k)).
EXAMPLE
The first five terms in A002618 (n*phi(n)) are 1, 2, 6, 8, 20 and so T(4,2) = 8*6*2*1/((2*1)*(2*1)) = 24 and T(5,3) = 20*8*6*2*1/((6*2*1)*(2*1)) = 80.
The triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 8, 24, 8, 1;
1, 20, 80, 80, 20, 1;
1, 12, 120, 160, 120, 12, 1;
1, 42, 252, 840, 840, 252, 42, 1
PROG
(Sage)
q=100 #change q for more rows
P=[i*euler_phi(i) for i in [0..q]]
[[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tom Edgar, Mar 10 2015
STATUS
approved