login
A255917
Triangular numbers n such that each decimal digit of n is equal to the difference of at least two other digits of n.
3
990, 3003, 5050, 10011, 10878, 13203, 15051, 28680, 39903, 41041, 45150, 64620, 66066, 81810, 93096, 107880, 108811, 145530, 155403, 165600, 191890, 203203, 237705, 322003, 339900, 404550, 405450, 414505, 441330, 468028, 499500, 500500, 502503, 504510
OFFSET
1,1
COMMENTS
Proper subset of A255966. - Michel Marcus , Mar 13, 2015.
EXAMPLE
10878 is in this sequence since it is the 147th triangular number and 1 = 8-7, 0 = 8-8, 8 = 8-0, 7 = 8-1 and 8 = 8-0, where the eights are different digits.
MATHEMATICA
fQ[n_] := Block[{id = IntegerDigits@ n, lng = 1 + Floor@ Log10@ n}, Union@ Table[c = Complement[ Range@ lng, {i}]; MemberQ[ Union@ Flatten@ Table[Abs[id[[j]] - id[[k]]], {j, c}, {k, c}], id[[i]]], {i, lng}] == {True}]; tri[n_] := n(n + 1)/2; Select[ tri@ Range@ 1050, fQ]
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
STATUS
approved