The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255404 Number of different integer partitions of n that produce the maximum number of set partitions for a set of cardinality n. 1
 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 3, 2, 1, 4, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 6, 4, 1, 2, 1, 5, 5, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 2, 2, 1, 1, 4, 1, 1, 2, 3, 1, 8, 2, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 3, 2, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS If n=Sum_i[n_i], the number of set partitions can be written as sp=n!/Prod_i,j(n_i!m_j!) where m_j is the multiplicity of the integer j in the n_i's. For certain integers, this number is maximized by more than one partition. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 EXAMPLE For n=9, {1,1,2,2,3} maximizes the number of set partitions, while for n=10, this number is maximized by {1,2,3,4}, {1,1,2,3,3}, {1,2,2,2,3} and {1,1,1,2,2,3}. MATHEMATICA Prod[l_] := Apply[Times, Map[#! &, l]]*     Apply[Times, Map[Count[l, #]! &, Range[Max[Length[l]]]]] b[n_] := (Min[Map[Prod, IntegerPartitions[n]]]) a[n_] := Count[Map[Prod, IntegerPartitions[n]], b[n]] Table[a[n], {n, 0, 20}] (* after A102356 *) CROSSREFS Cf. A102356, A102456. Sequence in context: A062378 A073753 A290602 * A078090 A174341 A168516 Adjacent sequences:  A255401 A255402 A255403 * A255405 A255406 A255407 KEYWORD nonn AUTHOR Andrei Cretu, Feb 22 2015 EXTENSIONS More terms from Alois P. Heinz, Feb 25 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 14:58 EDT 2021. Contains 342886 sequences. (Running on oeis4.)