|
|
A062378
|
|
n divided by largest cubefree factor of n.
|
|
10
|
|
|
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 9, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
COMMENTS
|
Numerator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), denominator: A055231. - Reinhard Zumkeller, Dec 10 2002
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..10000
Henry Bottomley, Some Smarandache-type multiplicative sequences.
|
|
FORMULA
|
a(n) = n / A007948(n).
a(n) = A003557(A003557(n)). - Antti Karttunen, Nov 28 2017
Multiplicative with a(p^e) = p^max(e-2, 0). - Amiram Eldar, Sep 07 2020
|
|
MATHEMATICA
|
f[p_, e_] := p^Max[e-2, 0]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
|
|
PROG
|
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, f[i, 1]^max(f[i, 2]-2, 0)) \\ Charles R Greathouse IV, Aug 08 2013
(Scheme)
(define (A062378 n) (/ n (A007948 n)))
(definec (A007948 n) (if (= 1 n) n (* (expt (A020639 n) (min 2 (A067029 n))) (A007948 (A028234 n)))))
;; Antti Karttunen, Nov 28 2017
|
|
CROSSREFS
|
Cf. A000189, A000578, A007948, A008834, A019555, A048798, A050985, A053149, A053150, A056551, A056552. See A003557 for squares and A062379 for 4th powers.
Differs from A073753 for the first time at n=90, where a(90) = 1, while A073753(90) = 3.
Cf. A007947, A055231.
Sequence in context: A191358 A204133 A342017 * A073753 A290602 A255404
Adjacent sequences: A062375 A062376 A062377 * A062379 A062380 A062381
|
|
KEYWORD
|
nonn,mult
|
|
AUTHOR
|
Henry Bottomley, Jun 18 2001
|
|
STATUS
|
approved
|
|
|
|