login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255047
1 together with the positive terms of A000225.
11
1, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295
OFFSET
0,3
COMMENTS
Also, right border of A246674 arranged as an irregular triangle.
Essentially the same as A168604, A126646 and A000225.
Total number of lambda-parking functions induced by all partitions of n. a(0)=1: [], a(1)=1: [1], a(2)=3: [1], [2], [1,1], a(4)=7: [1], [2], [3], [1,1], [1,2], [2,1], [1,1,1]. - Alois P. Heinz, Dec 04 2015
Also, the decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 645", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 19 2017
Also number of multiset partitions of {1,1} U [n] into exactly 2 nonempty parts. a(2) = 3: 111|2, 11|12, 1|112. - Alois P. Heinz, Aug 18 2017
Also, the number of unlabeled connected P-series (equivalently, connected P-graphs) with n+1 elements. - Salah Uddin Mohammad, Nov 19 2021
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
From Alois P. Heinz, Feb 19 2015: (Start)
O.g.f.: (1 -2*x +2*x^2)/((1-x)*(1-2*x)).
E.g.f.: exp(2*x) - exp(x) + 1. (End)
a(n) = A078485(n+1) for n > 2. - Georg Fischer, Oct 22 2018
MATHEMATICA
CoefficientList[Series[(1 -2*x +2*x^2)/((1-x)*(1-2*x)), {x, 0, 33}], x] (* or *) LinearRecurrence[{3, -2}, {1, 1, 3}, 40] (* Vincenzo Librandi, Jul 20 2017 *)
Table[2^n -1 +Boole[n==0], {n, 0, 40}] (* G. C. Greubel, Feb 07 2021 *)
PROG
(Sage) [1]+[2^n -1 for n in (1..40)] # G. C. Greubel, Feb 07 2021
(Magma) [1] cat [2^n -1: n in [1..40]]; // G. C. Greubel, Feb 07 2021
(Python)
def A255047(n): return -1^(-1<<n) if n else 1 # Chai Wah Wu, Dec 21 2022
CROSSREFS
Row n=1 of A263159.
Column k=2 of A291117.
Cf. A078485.
Sequence in context: A060152 A126646 A225883 * A000225 A168604 A123121
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Feb 15 2015
STATUS
approved