The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225883 a(n) = (-1)^n * (1 - 2^n). 4
 0, 1, -3, 7, -15, 31, -63, 127, -255, 511, -1023, 2047, -4095, 8191, -16383, 32767, -65535, 131071, -262143, 524287, -1048575, 2097151, -4194303, 8388607, -16777215, 33554431, -67108863, 134217727, -268435455, 536870911, -1073741823, 2147483647, -4294967295 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A001047(n) = p(0) where p(x) is the unique degree-(n-1) polynomial such that p(k) = a(k) for k = 1, 2, ..., n. a(n) = p(n) where p(x) is the unique degree-(n-1) polynomial such that p(k) = (-1)^k for k = 0, 1, ..., n-1. LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 Index entries for linear recurrences with constant coefficients, signature (-3, -2). FORMULA G.f.: x / ((1 + x) * (1 + 2*x)) = 1 / (1+x) - 1 / (1 + 2*x). E.g.f.: exp(-x) - exp(-2*x). a(n) = -2 * a(n-1) - (-1)^n if n>0. a(n) = -(-1)^n * A000225(n). a(n) = -3 * a(n-1) - 2 * a(n-2) if n>1. REVERT transform is A001003 omitting a(0)=0. INVERT transform is A108520. 2^n = a(n+1)^2 - a(n) * a(n+2). |a(n)| = A168604(n+2)= A000225(n). EXAMPLE G.f. = x - 3*x^2 + 7*x^3 - 15*x^4 + 31*x^5 - 63*x^6 + 127*x^7 - 255*x^8 + 511*x^9 + ... MATHEMATICA a[ n_] := If[ n<0, 0, (-1)^n (1 - 2^n)]; LinearRecurrence[{-3, -2}, {0, 1}, 50] (* G. C. Greubel, Aug 09 2018 *) PROG (PARI) {a(n) = if( n<0, 0, (-1)^n * (1 - 2^n))}; (PARI) {a(n) = if( n<0, 0, polcoeff( x / ((1 + x) * (1 + 2*x)) + x * O(x^n), n))}; (Magma) [(-1)^n*(1 - 2^n): n in [0..50]]; // G. C. Greubel, Aug 09 2018 CROSSREFS Cf. A000225, A001003, A001047, A108520. Sequence in context: A097002 A060152 A126646 * A255047 A000225 A168604 Adjacent sequences: A225880 A225881 A225882 * A225884 A225885 A225886 KEYWORD sign,easy AUTHOR Michael Somos, May 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 18:13 EST 2022. Contains 358431 sequences. (Running on oeis4.)