login
A254839
Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock sum of the medians of the diagonal and antidiagonal minus the two sums of the central row and column nondecreasing horizontally and vertically
1
2485, 10550, 37642, 117706, 298165, 645882, 1323795, 2679351, 5270801, 9822005, 17608541, 32195971, 59170060, 105871403, 185688783, 340039336, 636277279, 1159044962, 2068195561, 3936936099, 7724743313, 14602383681, 26793160741
OFFSET
1,1
COMMENTS
Column 2 of A254845
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) +24*a(n-4) -75*a(n-5) +38*a(n-6) -15*a(n-7) -151*a(n-8) +562*a(n-9) -119*a(n-10) -17*a(n-11) +349*a(n-12) -2028*a(n-13) -766*a(n-14) +914*a(n-15) +69*a(n-16) +4267*a(n-17) +6068*a(n-18) -4235*a(n-19) -2860*a(n-20) -5903*a(n-21) -17549*a(n-22) +8002*a(n-23) +10603*a(n-24) +5425*a(n-25) +27907*a(n-26) -8034*a(n-27) -23136*a(n-28) -2946*a(n-29) -26559*a(n-30) +11783*a(n-31) +36775*a(n-32) +4246*a(n-33) +12190*a(n-34) -27690*a(n-35) -58236*a(n-36) -16478*a(n-37) +1877*a(n-38) +40361*a(n-39) +94751*a(n-40) +35880*a(n-41) +6503*a(n-42) -35231*a(n-43) -115497*a(n-44) -54000*a(n-45) -32463*a(n-46) +17921*a(n-47) +88249*a(n-48) +62850*a(n-49) +39132*a(n-50) +5078*a(n-51) -42124*a(n-52) -50026*a(n-53) -21058*a(n-54) -20330*a(n-55) +16513*a(n-56) +21251*a(n-57) +6717*a(n-58) +15920*a(n-59) -7160*a(n-60) -1952*a(n-61) -3024*a(n-62) -4684*a(n-63) +1784*a(n-64) -1284*a(n-65) +1252*a(n-66) +208*a(n-67) +96*a(n-68) +208*a(n-69) -144*a(n-70) +48*a(n-71) -48*a(n-72) for n>85
EXAMPLE
Some solutions for n=4
..0..0..1..0....1..0..0..0....1..1..1..0....1..1..1..1....1..1..0..1
..1..1..0..1....1..1..0..1....1..1..0..1....1..1..0..0....1..1..1..1
..0..1..0..0....0..1..1..1....0..1..1..1....0..1..1..0....1..1..1..0
..0..0..0..0....1..1..0..0....0..0..0..0....1..1..0..0....0..1..1..1
..0..0..0..0....0..0..1..1....0..0..0..0....0..0..0..1....1..1..0..0
..0..1..0..1....1..1..1..0....0..0..0..1....1..1..1..1....0..0..1..1
CROSSREFS
Sequence in context: A258442 A255750 A255757 * A231456 A190414 A248548
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 08 2015
STATUS
approved