login
A255750
Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock sum of the medians of the diagonal and antidiagonal minus the two sums of the central row and column nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1
2485, 7765, 20730, 46367, 86062, 156658, 290525, 531182, 940860, 1668674, 3031160, 5597085, 10094701, 18262539, 34114081, 65352635, 121376088, 225653362, 436223139, 868777357, 1663472667, 3171906522, 6300155508, 12902328159
OFFSET
1,1
COMMENTS
Column 2 of A255756
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -2*a(n-2) +4*a(n-3) +19*a(n-4) -40*a(n-5) +39*a(n-6) -84*a(n-7) -52*a(n-8) +164*a(n-9) -175*a(n-10) +408*a(n-11) -34*a(n-12) -164*a(n-13) +302*a(n-14) -726*a(n-15) +229*a(n-16) +2*a(n-17) -517*a(n-18) +772*a(n-19) -820*a(n-20) +66*a(n-21) +346*a(n-22) -890*a(n-23) +1546*a(n-24) -306*a(n-25) +883*a(n-26) +806*a(n-27) -862*a(n-28) +562*a(n-29) -1410*a(n-30) -268*a(n-31) -390*a(n-32) -338*a(n-33) +471*a(n-34) -46*a(n-35) +397*a(n-36) +48*a(n-37) +83*a(n-38) +24*a(n-39) -28*a(n-40) +4*a(n-41) -20*a(n-42) -4*a(n-44) for n>53
EXAMPLE
Some solutions for n=4
..0..0..1..1....0..1..0..1....1..0..0..1....1..0..1..1....1..1..0..0
..1..0..0..1....1..1..1..1....1..1..1..0....1..1..1..0....0..0..1..1
..0..1..1..0....1..1..1..0....0..1..0..0....0..1..1..1....1..0..0..1
..0..0..0..1....1..0..1..0....0..0..0..1....1..1..0..1....0..1..1..0
..0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0....1..1..0..0
..0..1..1..1....0..1..0..1....0..0..0..0....1..1..0..0....1..0..1..1
CROSSREFS
Sequence in context: A214477 A181258 A258442 * A255757 A254839 A231456
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 05 2015
STATUS
approved