OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
Given g.f. A(x), 0 = (x^2-x)*A(x)^2 + (x^2-2*x+1)*A(x) + (2*x-1).
G.f.: (1 - 2*x + x^2 - sqrt( (1-4*x+x^2)^2 - 4*x^3 )) / (2*x*(1 - x)).
Conjecture: +(n+1)*a(n) +(-8*n+3)*a(n-1) +(18*n-29)*a(n-2) +(-12*n+31)*a(n-3) +(n-4)*a(n-4)=0. - R. J. Mathar, Jun 07 2016
EXAMPLE
G.f. = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 78*x^5 + 299*x^6 + 1172*x^7 + ...
MATHEMATICA
CoefficientList[Series[(1-2*x+x^2-Sqrt[(1-4*x+x^2)^2-4*x^3])/(2*x*(1 - x)), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( (1 - 2*x + x^2 - sqrt( (1-4*x+x^2)^2 - 4*x^3 + x^2 * O(x^n))) / (2*x*(1 - x)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 28 2015
STATUS
approved