login
A129776
Number of maximally-clustered hexagon-avoiding permutations in S_n; the maximally-clustered hexagon-avoiding permutations are those that avoid 3421, 4312, 4321, 46718235, 46781235, 56718234, 56781234.
0
1, 2, 6, 21, 78, 298, 1157, 4535, 17872, 70644, 279704, 1108462, 4395045, 17431206, 69144643, 274300461, 1088215370, 4317321235, 17128527716, 67956202025, 269612504850, 1069675361622, 4243893926396, 16837490364983, 66802139457897, 265035151393777
OFFSET
1,2
COMMENTS
If w is maximally-clustered and hexagon-avoiding, there are simple explicit formulas for all the Kazhdan-Lusztig polynomials P_{x,w}.
REFERENCES
Jozsef Losonczy, Maximally clustered elements and Schubert varieties, Ann. Comb. 11 (2007), no. 2, 195-212.
FORMULA
G.f.: (3x^6+x^5-5x^4+7x^3-5x^2+x) / (-3x^6+4x^5+8x^4-14x^3+15x^2-7x+1).
EXAMPLE
a(8)=4535 because there are 4535 permutations of size 8 that avoid 3421, 4312, 4321, 46718235, 46781235, 56718234 and 56781234.
PROG
(PARI) lista(nt) = { my(x = 'x + 'x*O('x^nt) ); P = (3*x^6+x^5-5*x^4+7*x^3-5*x^2+x) / (-3*x^6+4*x^5+8*x^4-14*x^3+15*x^2-7*x+1); print(Vec(P)); } \\ Michel Marcus, Mar 17 2013
CROSSREFS
Sequence in context: A124292 A277221 A360168 * A129775 A235391 A254316
KEYWORD
nonn
AUTHOR
Brant Jones (brant(AT)math.washington.edu), May 17 2007
EXTENSIONS
More terms from Michel Marcus, Mar 17 2013
STATUS
approved