

A254059


a(n) is the numerator of the generalized continued fraction with terms sigma(m)/m for m=1 to n.


2



1, 2, 10, 18, 110, 146, 1902, 17406, 18138, 1063554, 1067358, 613398, 32007426, 3207106806, 19364306334, 11692834638, 7305794123622, 49155004502022, 1080060968010858, 11832864774651042, 21773239326463026, 475223541375418782, 83304240831298888014
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..23.


EXAMPLE

The values of sigma(n)/n are: 1/1, 3/2, 4/3, 7/4, 6/5, ...
For n=1, the continued fraction is 1/1 so a(1)=1.
For n=2, it is 1/(1+3/2) = 2/5, so a(2)=2.
For n=3, it is 1/(1+3/(2+4/3)) = 10/19, so a(3)=10.


PROG

(PARI) a(nn) = {my(v = vector(nn, n, sigma(n)/n)); for (n=1, nn, val = v[n]; forstep(k=n1, 1, 1, val = numerator(v[k])/(denominator(v[k]) + val); ); print1(numerator(val), ", "); ); }


CROSSREFS

Cf. A017665 and A017666 (numerator and denominator of sigma(n)/n).
Cf. A254060 (denominators), A254061.
Sequence in context: A134251 A317714 A055260 * A346551 A180591 A330083
Adjacent sequences: A254056 A254057 A254058 * A254060 A254061 A254062


KEYWORD

nonn,frac


AUTHOR

Michel Marcus, Jan 24 2015


STATUS

approved



