

A254061


Decimal expansion of the generalized continued fraction with terms sigma(n)/n for n>=1.


2



4, 9, 2, 2, 7, 6, 7, 6, 1, 3, 8, 3, 0, 7, 9, 9, 4, 1, 1, 6, 5, 9, 5, 7, 1, 7, 8, 6, 6, 5, 9, 3, 6, 4, 2, 1, 7, 8, 1, 4, 2, 3, 6, 1, 8, 6, 9, 2, 5, 6, 4, 9, 6, 0, 3, 2, 6, 7, 7, 6, 0, 2, 4, 3, 4, 0, 1, 4, 2, 3, 4, 1, 6, 5, 8, 6, 1, 2, 2, 3, 9, 6, 5, 6, 8, 2, 6, 0, 5, 3, 7, 2, 4, 6, 6, 8, 4, 8, 3, 8, 1, 3, 9, 0, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The values of sigma(n)/n are: 1/1, 3/2, 4/3, 7/4, 6/5, ...
This is the limit of the expression 1/(1 + 3/(2 + 4/(3 + 7/(4 + .../...)))).


LINKS

Table of n, a(n) for n=0..104.


EXAMPLE

0.4922767613830799411659571786659364217814236186925...


PROG

(PARI) value(nn=100) = {my(v = vector(nn, n, sigma(n)/n)); for (n=1, nn, val = v[n]; forstep(k=n1, 1, 1, val = numerator(v[k])/(denominator(v[k]) + val); ); ); print1(val*1.0); }


CROSSREFS

Cf. A017665 and A017666 (numerator and denominator of sigma(n)/n).
Cf. A254059, A254060.
Sequence in context: A006830 A238592 A229553 * A098174 A126709 A254159
Adjacent sequences: A254058 A254059 A254060 * A254062 A254063 A254064


KEYWORD

nonn,cons


AUTHOR

Michel Marcus, Jan 24 2015


STATUS

approved



