login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253189
Triangle T(n, m)=Sum_{k=1..(n-m)/3} C(m, k)*T((n-m)/3, k), T(n,n)=1.
1
1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 0, 4, 0, 0, 1, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0, 3, 0, 0, 6, 0, 0, 1, 0, 0, 0, 6, 0, 0, 7, 0, 0, 1, 0, 0, 0, 0, 10, 0, 0, 8, 0, 0, 1, 0, 0, 1, 0, 0, 15, 0, 0, 9, 0, 0, 1, 1, 0, 0, 4, 0, 0, 21, 0, 0, 10, 0, 0, 1, 0, 2, 0, 0, 10, 0, 0, 28, 0, 0, 11, 0, 0, 1, 0, 0, 3, 0, 0, 20, 0, 0, 36, 0, 0, 12, 0, 0, 1
OFFSET
1,12
LINKS
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3
FORMULA
G.f.: A(x)^m=Sum_{n>=m} T(n,m)*x^n, where A(x)=Sum_{n>0} x^((3^n-1)/2).
EXAMPLE
1;
0, 1;
0, 0, 1;
1, 0, 0, 1;
0, 2, 0, 0, 1;
0, 0, 3, 0, 0, 1;
PROG
(Maxima)
T(n, m):=if n=m then 1 else sum(binomial(m, k)*T((n-m)/3, k), k, 1, (n-m)/3);
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Mar 24 2015
STATUS
approved