login
A253184
Triangle T(n,m) = Sum_{k=1..(n-m)/2} C(m, k)*T((n-m)/2, k), T(n,n)=1.
2
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 0, 3, 0, 1, 0, 1, 0, 4, 0, 1, 1, 0, 3, 0, 5, 0, 1, 0, 2, 0, 6, 0, 6, 0, 1, 0, 0, 4, 0, 10, 0, 7, 0, 1, 0, 2, 0, 8, 0, 15, 0, 8, 0, 1, 0, 0, 6, 0, 15, 0, 21, 0, 9, 0, 1, 0, 0, 0, 13, 0, 26, 0, 28, 0, 10, 0, 1
OFFSET
1,8
FORMULA
G.f.: A(x)^m = Sum_{n>=m} T(n,m)*x^n, where A(x) = Sum_{n>0} x^(2^n-1).
(1+A(x)) is g.f. of Fredholm-Rueppel sequence (A036987).
EXAMPLE
First few rows are:
1;
0, 1;
1, 0, 1;
0, 2, 0, 1;
0, 0, 3, 0, 1;
0, 1, 0, 4, 0, 1;
PROG
(Maxima)
T(n, m):=if n=m then 1 else sum(binomial(m, k)*T((n-m)/2, k), k, 1, (n-m)/2);
CROSSREFS
Cf. A036987.
Sequence in context: A115235 A355619 A355607 * A242086 A160973 A036853
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Mar 23 2015
STATUS
approved