OFFSET
0,9
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
T(0,k) = 1 and T(n,k) = -(n-1)!/k! * Sum_{j=k+1..n} (-1)^(j-k) * j/(j-k) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} Stirling1(n-k*j,j)/(k!^j * (n-k*j)!).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
0, 2, 0, 0, 0, 0, 0, ...
0, -3, 3, 0, 0, 0, 0, ...
0, 20, -6, 4, 0, 0, 0, ...
0, -90, 20, -10, 5, 0, 0, ...
0, 594, 0, 40, -15, 6, 0, ...
PROG
(PARI) T(n, k) = n!*sum(j=0, n\(k+1), stirling(n-k*j, j, 1)/(k!^j*(n-k*j)!));
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Jul 10 2022
STATUS
approved