login
A253187
Number of ordered ways to write n as the sum of a pentagonal number, a second pentagonal number and a generalized decagonal number.
2
1, 2, 2, 2, 1, 1, 1, 3, 4, 2, 2, 1, 4, 3, 3, 4, 2, 3, 1, 3, 2, 2, 5, 3, 3, 3, 3, 6, 3, 6, 4, 2, 3, 1, 7, 2, 4, 5, 5, 4, 1, 5, 5, 2, 3, 4, 4, 5, 5, 5, 3, 5, 7, 6, 4, 3, 1, 6, 6, 8, 5, 3, 6, 4, 7, 4, 2, 6, 5, 5, 3, 4, 8, 3, 3, 3, 6, 6, 7, 9, 6, 2, 5, 6, 7, 7, 4, 6, 6, 7, 5, 3, 10, 6, 3, 4, 5, 7, 3, 10, 7
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n. Also, for any ordered pair (k,m) among (5,7), (5,9), (5,13), (6,5), (6,7), (7,5), each nonnegative integer n can be written as the sum of a k-gonal number, a second k-gonal number and a generalized m-gonal number.
See also the author's similar conjectures in A254574, A254631, A255916 and the two linked papers.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
EXAMPLE
a(33) = 1 since 33 = 0*(3*0-1)/2 + 4*(3*4+1)/2 + 1*(4*1+3).
a(56) = 1 since 56 = 4*(3*4-1)/2 + 2*(3*2+1)/2 + 3*(4*3+3).
MATHEMATICA
DQ[n_]:=IntegerQ[Sqrt[16n+9]]
Do[r=0; Do[If[DQ[n-x(3x-1)/2-y(3y+1)/2], r=r+1], {x, 0, (Sqrt[24n+1]+1)/6}, {y, 0, (Sqrt[24(n-x(3x-1)/2)+1]-1)/6}];
Print[n, " ", r]; Continue, {n, 0, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 07 2015
STATUS
approved