login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252868
Squarefree version of A252867.
4
1, 2, 3, 10, 21, 5, 6, 35, 22, 15, 14, 33, 7, 30, 77, 26, 105, 13, 42, 65, 66, 91, 11, 70, 143, 210, 187, 39, 55, 78, 385, 34, 165, 182, 51, 110, 273, 85, 154, 195, 119, 330, 17, 231, 170, 429, 238, 715, 102, 455, 374, 1365, 38, 1155, 442, 57, 770, 663, 95, 462, 1105, 114, 1001, 255
OFFSET
1,2
COMMENTS
a(n) = n if n <= 3, otherwise the first squarefree number not occurring earlier having at least one common factor with a(n-2), but none with a(n-1). The squarefree numbers are ordered by their occurrence in A019565.
These represent the same sets of integers as A252867 does, but using the factorization of squarefree numbers for the representation.
This is a permutation of the squarefree numbers. [I believe this is at present only a conjecture. - N. J. A. Sloane, Jan 10 2015]
LINKS
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.
FORMULA
a(n)=A019565(A252867(n-1))
MATHEMATICA
(* b = A019565, c = A252867 *)
b[n_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[IntegerDigits[n, 2]]];
c[n_] := c[n] = If[n<3, n, For[k=3, True, k++, If[FreeQ[Array[c, n-1], k], If[BitAnd[k, c[n-2]] >= 1 && BitAnd[k, c[n-1]] == 0, Return[k]]]]];
a[n_] := b[c[n-1]];
Array[a, 64] (* Jean-François Alcover, Oct 03 2018 *)
PROG
(PARI) invecn(v, k, x)=for(i=1, k, if(v[i]==x, return(i))); 0
squarefree(n)=local(r=1, i=1); while(n>0, if(n%2, r*=prime(i)); i++; n\=2); r
alist(n)=local(v=vector(n, i, i-1), x); for(k=4, n, x=3; while(invecn(v, k-1, x)||!bitand(v[k-2], x)||bitand(v[k-1], x), x++); v[k]=x); vector(n, i, squarefree(v[i]))
(Python)
from operator import mul
from functools import reduce
from sympy import prime
def A019565(n):
....return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1
A252868_list, l1, l2, s, b = [1, 2, 3], 2, 1, 3, set()
for _ in range(10**4):
....i = s
....while True:
........if not (i in b or i & l1) and i & l2:
............A252868_list.append(A019565(i))
............l2, l1 = l1, i
............b.add(i)
............while s in b:
................b.remove(s)
................s += 1
............break
........i += 1 # Chai Wah Wu, Dec 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved