login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A252868 Squarefree version of A252867. 4
1, 2, 3, 10, 21, 5, 6, 35, 22, 15, 14, 33, 7, 30, 77, 26, 105, 13, 42, 65, 66, 91, 11, 70, 143, 210, 187, 39, 55, 78, 385, 34, 165, 182, 51, 110, 273, 85, 154, 195, 119, 330, 17, 231, 170, 429, 238, 715, 102, 455, 374, 1365, 38, 1155, 442, 57, 770, 663, 95, 462, 1105, 114, 1001, 255 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) = n if n <= 3, otherwise the first squarefree number not occurring earlier having at least one common factor with a(n-2), but none with a(n-1). The squarefree numbers are ordered by their occurrence in A019565.

These represent the same sets of integers as A252867 does, but using the factorization of squarefree numbers for the representation.

This is a permutation of the squarefree numbers. [I believe this is at present only a conjecture. - N. J. A. Sloane, Jan 10 2015]

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000

David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015.

FORMULA

a(n)=A019565(A252867(n-1))

PROG

(PARI) invecn(v, k, x)=for(i=1, k, if(v[i]==x, return(i))); 0

squarefree(n)=local(r=1, i=1); while(n>0, if(n%2, r*=prime(i)); i++; n\=2); r

alist(n)=local(v=vector(n, i, i-1), x); for(k=4, n, x=3; while(invecn(v, k-1, x)||!bitand(v[k-2], x)||bitand(v[k-1], x), x++); v[k]=x); vector(n, i, squarefree(v[i]))

(Python)

from operator import mul

from functools import reduce

from sympy import prime

def A019565(n):

....return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1

A252868_list, l1, l2, s, b = [1, 2, 3], 2, 1, 3, set()

for _ in range(10**4):

....i = s

....while True:

........if not (i in b or i & l1) and i & l2:

............A252868_list.append(A019565(i))

............l2, l1 = l1, i

............b.add(i)

............while s in b:

................b.remove(s)

................s += 1

............break

........i += 1 # Chai Wah Wu, Dec 25 2014

CROSSREFS

Cf. A252867, A098550, A252865, A048793, A019565.

Sequence in context: A226356 A141050 A252865 * A225477 A079161 A069565

Adjacent sequences:  A252865 A252866 A252867 * A252869 A252870 A252871

KEYWORD

nonn

AUTHOR

Franklin T. Adams-Watters, Dec 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 17:03 EDT 2017. Contains 284137 sequences.