login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225477 Triangle read by rows, 3^k*s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0. 1
1, 2, 3, 10, 21, 9, 80, 198, 135, 27, 880, 2418, 2079, 702, 81, 12320, 36492, 36360, 16065, 3240, 243, 209440, 657324, 727596, 382185, 103275, 13851, 729, 4188800, 13774800, 16523892, 9826488, 3212055, 586845, 56133, 2187, 96342400, 329386800, 421373916 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Triangle T(n,k), read by rows, given by (2, 3, 5, 6, 8, 9, 11, 12, 14, ... (A007494)) DELTA (3, 0, 3, 0, 3, 0, 3, 0, 3, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 15 2015

LINKS

Table of n, a(n) for n=0..38.

Peter Luschny, Generalized Eulerian polynomials.

Peter Luschny, The Stirling-Frobenius numbers.

FORMULA

For a recurrence see the Sage program.

T(n,k) = 3^k * A225470(n,k). - Philippe Deléham, May 14 2015.

EXAMPLE

[n\k][   0,      1,      2,      3,      4,     5,   6 ]

[0]      1,

[1]      2,      3,

[2]     10,     21,      9,

[3]     80,    198,    135,     27,

[4]    880,   2418,   2079,    702,     81,

[5]  12320,  36492,  36360,  16065,   3240,   243,

[6] 209440, 657324, 727596, 382185, 103275, 13851, 729.

PROG

(Sage)

@CachedFunction

def SF_CS(n, k, m):

    if k > n or k < 0 : return 0

    if n == 0 and k == 0: return 1

    return m*SF_CS(n-1, k-1, m) + (m*n-1)*SF_CS(n-1, k, m)

for n in (0..8): [SF_CS(n, k, 3) for k in (0..n)]

CROSSREFS

T(n, 0) ~ A008544; T(n, n) ~ A000244.

row sums ~ A034000; alternating row sums ~ A008544.

Cf. A225470, A132393 (m=1), A028338 (m=2), A225478 (m=4).

Sequence in context: A141050 A252865 A252868 * A079161 A069565 A139694

Adjacent sequences:  A225474 A225475 A225476 * A225478 A225479 A225480

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, May 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 20 14:09 EDT 2019. Contains 325181 sequences. (Running on oeis4.)