This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225477 Triangle read by rows, 3^k*s_3(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0. 1
 1, 2, 3, 10, 21, 9, 80, 198, 135, 27, 880, 2418, 2079, 702, 81, 12320, 36492, 36360, 16065, 3240, 243, 209440, 657324, 727596, 382185, 103275, 13851, 729, 4188800, 13774800, 16523892, 9826488, 3212055, 586845, 56133, 2187, 96342400, 329386800, 421373916 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Triangle T(n,k), read by rows, given by (2, 3, 5, 6, 8, 9, 11, 12, 14, ... (A007494)) DELTA (3, 0, 3, 0, 3, 0, 3, 0, 3, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 15 2015 LINKS Peter Luschny, Generalized Eulerian polynomials. Peter Luschny, The Stirling-Frobenius numbers. FORMULA For a recurrence see the Sage program. T(n,k) = 3^k * A225470(n,k). - Philippe Deléham, May 14 2015. EXAMPLE [n\k][   0,      1,      2,      3,      4,     5,   6 ] [0]      1, [1]      2,      3, [2]     10,     21,      9, [3]     80,    198,    135,     27, [4]    880,   2418,   2079,    702,     81, [5]  12320,  36492,  36360,  16065,   3240,   243, [6] 209440, 657324, 727596, 382185, 103275, 13851, 729. PROG (Sage) @CachedFunction def SF_CS(n, k, m):     if k > n or k < 0 : return 0     if n == 0 and k == 0: return 1     return m*SF_CS(n-1, k-1, m) + (m*n-1)*SF_CS(n-1, k, m) for n in (0..8): [SF_CS(n, k, 3) for k in (0..n)] CROSSREFS T(n, 0) ~ A008544; T(n, n) ~ A000244. row sums ~ A034000; alternating row sums ~ A008544. Cf. A225470, A132393 (m=1), A028338 (m=2), A225478 (m=4). Sequence in context: A141050 A252865 A252868 * A079161 A069565 A139694 Adjacent sequences:  A225474 A225475 A225476 * A225478 A225479 A225480 KEYWORD nonn,tabl AUTHOR Peter Luschny, May 17 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 14:09 EDT 2019. Contains 325181 sequences. (Running on oeis4.)