login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A252077
Numbers n such that the hexagonal number X(n) is equal to the sum of the heptagonal number H(m) and H(m+1) for some m.
2
1, 769, 1108537, 1598509225, 2305049193553, 3323879338593841, 4793031701203124809, 6911548389255567380377, 9966447984274826959378465, 14371611081775911219856365793, 20723853213472879704205920094681, 29883781962216810757553716920163849
OFFSET
1,2
COMMENTS
Also nonnegative integers y in the solutions to 10*x^2-4*y^2+4*x+2*y+2 = 0, the corresponding values of x being A252076.
FORMULA
a(n) = 1443*a(n-1)-1443*a(n-2)+a(n-3).
G.f.: -x*(313*x^2-674*x+1) / ((x-1)*(x^2-1442*x+1)).
EXAMPLE
769 is in the sequence because X(769) = 1181953 = 589761+592192 = H(486)+H(487).
PROG
(PARI) Vec(-x*(313*x^2-674*x+1)/((x-1)*(x^2-1442*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 13 2014
STATUS
approved