login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216646 a(n) = 1+2*(d1 + 1)*(d2 + 1)* … *(dk + 1), where d1, d2, ..., dk are the prime factors of the n-th Fermat pseudoprime to base 2 A001567(n). 0
769, 1729, 2113, 3025, 2961, 4481, 6145, 4321, 6481, 5625, 7169, 6841, 8361, 9289, 12289, 9729, 11265, 16129, 16281, 17065, 24769, 21761, 21249, 26641, 34561, 36289, 34049, 28081, 32257, 29745, 32833, 37889, 43345, 63361, 38025, 40609, 72577, 47433, 71169 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

It is notable how many primes, semiprimes, pseudoprimes, squares and multiples of 3 are in this sequence.

Primes obtained and the corresponding Fermat pseudoprime in the brackets: 769 (341), 2113 (645), 4481 (1729), 6481 (2465), 6841 (3277), 12289 (4371), 26641 (10585), 28081 (13747), 32257 (13981), 32833 (15709), 37889 (15841), 63361 (18705), 40609 (19951), 72577 (23001).

Semiprimes obtained and the corresponding Fermat pseudoprime in the brackets: 6145 (1905), 4321 (2047), 7169 (2821), 9289 (4369), 17065 (8321), 21761 (8911), 36289 (12801), 34049 (13741), 43345 (16705).

Pseudoprimes obtained and the corresponding Fermat pseudoprime in the brackets: 1729 (561).

Squares obtained and the corresponding Fermat pseudoprime in the brackets: 3025 = 5^2*11^2 (1105), 5625 = 3^2*5^4 (2701), 16129 = 127^2 (6601), 38025 = 3^2*5^2*13^2 (18721).

Multiples of 3 obtained and the corresponding Fermat pseudoprime in the brackets: 2961 = 3^2*329 (1387), 5625 = 3^2*625 (2701), 8361 = 3^2*929 (4033), 9729 = 3^2*1081 (4681), 3*3755 (5461), 16281 = 3^5*67 (7957), 21249 = 3^3*787 (10261), 29745 = 3^2*3305 (14491), 38025 = 3^2*4225 (18721), 47433 = 3*15811 (23377), 71169 = 3*23723 (25761).

The only numbers from the sequence above that are not into at least one of these categories (and the corresponding Fermat pseudoprime in the brackets) are 24769 = 17*31*47 (8481) and 34561 = 17*19*107 (11305).

An interesting correspondence with the function from the sequence A216404: with that one we obtain the pseudoprime 561 from the pseudoprime 1729 (2*a(n) + 1); with this one we obtain 1729 from 561 (a(n)). Another type of correspondence with that function: 2*a(n) + 1 = 769 for a(n) = 384 for that function (corresponding to pseudoprime 1905) while a(n) = 769 for this function (corresponding to pseudoprime 341).

LINKS

Table of n, a(n) for n=1..39.

Eric Weisstein's World of Mathematics, Poulet Number

CROSSREFS

Cf. A001567, A216404.

Sequence in context: A046505 A229854 A217495 * A252077 A236784 A205622

Adjacent sequences:  A216643 A216644 A216645 * A216647 A216648 A216649

KEYWORD

nonn

AUTHOR

Marius Coman, Sep 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 06:55 EDT 2019. Contains 321481 sequences. (Running on oeis4.)