login
A251412
Trajectory of 11 under the map n -> A098550(n).
4
11, 25, 26, 45, 95, 78, 105, 203, 196, 267, 455, 424, 392, 555, 498, 440, 406, 376, 340, 785, 1025, 944, 880, 1119, 1036, 1363, 1715, 2097, 2369, 1097, 1385, 641, 801, 730, 672, 867, 1077, 1341, 1238, 1713, 2091, 971, 1169, 541, 251, 339, 312, 288, 264, 242, 305, 413, 481, 1115, 1030, 1247
OFFSET
0,1
COMMENTS
It is believed that n -> A098550(n) is a permutation of the natural numbers. 1,2,3,4 are fixed points (cf. A251411), and there are cycles (5,9), (6,8,14,16,10), and (7,15). 11 is the smallest number whose trajectory is not presently known (and is probably infinite).
Hans Havermann has found that 1470 is in a cycle of length 30, and 1772 is in a cycle of length 84.
REFERENCES
Hans Havermann, Posting to Sequence Fans Mailing List, Dec 02 2014
LINKS
Reinhard Zumkeller and Hans Havermann (Reinhard Zumkeller to 119), Table of n, a(n) for n = 0..700
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.
MATHEMATICA
f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
ff = Nest[f, {1, 2, 3}, 2500];
g[n_ /; 1 <= n <= Length[ff]] := ff[[n]];
NestWhileList[g, 11, # <= Length[ff] &] (* Jean-François Alcover, Oct 03 2018, after Robert G. Wilson v in A098550 *)
PROG
(Haskell)
a251412 n = a251412_list !! (n-1)
a251412_list = iterate a098550 11 -- Reinhard Zumkeller, Dec 07 2014
CROSSREFS
Sequence in context: A114167 A108302 A182689 * A286279 A125868 A240895
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2014
STATUS
approved