

A251412


Trajectory of 11 under the map n > A098550(n).


4



11, 25, 26, 45, 95, 78, 105, 203, 196, 267, 455, 424, 392, 555, 498, 440, 406, 376, 340, 785, 1025, 944, 880, 1119, 1036, 1363, 1715, 2097, 2369, 1097, 1385, 641, 801, 730, 672, 867, 1077, 1341, 1238, 1713, 2091, 971, 1169, 541, 251, 339, 312, 288, 264, 242, 305, 413, 481, 1115, 1030, 1247
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

It is believed that n > A098550(n) is a permutation of the natural numbers. 1,2,3,4 are fixed points (cf. A251411), and there are cycles (5,9), (6,8,14,16,10), and (7,15). 11 is the smallest number whose trajectory is not presently known (and is probably infinite).
Hans Havermann has found that 1470 is in a cycle of length 30, and 1772 is in a cycle of length 84.


REFERENCES

Hans Havermann, Posting to Sequence Fans Mailing List, Dec 02 2014


LINKS

Reinhard Zumkeller and Hans Havermann (Reinhard Zumkeller to 119), Table of n, a(n) for n = 0..700
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.
Hans Havermann, Loops and unresolved chains for map n > A098550(n) trajectories
Hans Havermann, A portion of the trajectory containing 11


MATHEMATICA

f[lst_] := Block[{k = 4}, While[GCD[lst[[2]], k] == 1  GCD[lst[[1]], k] > 1  MemberQ[lst, k], k++]; Append[lst, k]];
ff = Nest[f, {1, 2, 3}, 2500];
g[n_ /; 1 <= n <= Length[ff]] := ff[[n]];
NestWhileList[g, 11, # <= Length[ff] &] (* JeanFrançois Alcover, Oct 03 2018, after Robert G. Wilson v in A098550 *)


PROG

(Haskell)
a251412 n = a251412_list !! (n1)
a251412_list = iterate a098550 11  Reinhard Zumkeller, Dec 07 2014


CROSSREFS

Cf. A098550, A251411.
Sequence in context: A114167 A108302 A182689 * A286279 A084547 A125868
Adjacent sequences: A251409 A251410 A251411 * A251413 A251414 A251415


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Dec 02 2014


STATUS

approved



