login
A240895
Consider a number of k digits n = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1). Sequence lists the numbers n such that sigma(n) - n = Sum_{i=1..k-1}{sigma(Sum_{j=1..i}{d_(j)*10^(j-1)})} (see example below).
2
11, 25, 31, 41, 61, 71, 341, 671, 2119, 10231, 39579, 52231, 60341, 402959, 1288689, 1393059, 1956759, 16752951, 108659999, 181704519, 794033191, 1062726071, 3518397571, 4062296851, 4085227151, 7015608139
OFFSET
1,1
COMMENTS
a(27) > 10^10. - Giovanni Resta, Apr 16 2014
EXAMPLE
If n = 52231, starting from the least significant digit, let us cut the number into the set 1, 31, 231, 2231. We have:
sigma(1) = 1;
sigma(31) = 32;
sigma(231) = 384;
sigma(2231) = 2352
and 1 + 32 + 384 + 2352 = 2769 = sigma(52231) - 52231.
MAPLE
with(numtheory); P:=proc(q) local a, k, n;
for n from 2 to q do a:=0; k:=1; while (n mod 10^k)<n do
a:=a+sigma(n mod 10^k); k:=k+1; od;
if sigma(n)-n=a then print(n); fi; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,more,base
AUTHOR
Paolo P. Lava, Apr 14 2014
EXTENSIONS
a(14), a(18)-a(26) from Giovanni Resta, Apr 16 2014
STATUS
approved