login
A251411
Numbers k such that A098550(k) = k.
3
1, 2, 3, 4, 12, 50, 86
OFFSET
1,2
COMMENTS
There is a strong conjecture that there are no further terms. See the discussion in the comments in A098550.
REFERENCES
L. Edson Jeffery, Posting to Sequence Fans Mailing List, Nov 30 2014.
LINKS
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.
MATHEMATICA
max = 100;
f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];
A098550 = Nest[f, {1, 2, 3}, max - 3];
Select[Transpose[{Range[max], A098550}], #[[1]] == #[[2]]&][[All, 1]] (* Jean-François Alcover, Sep 05 2018, after Robert G. Wilson v in A098550 *)
PROG
(Python)
from math import gcd
A251411_list, l1, l2, s, b = [1, 2, 3], 3, 2, 4, {}
for n in range(4, 10**4):
i = s
while True:
if not i in b and gcd(i, l1) == 1 and gcd(i, l2) > 1:
l2, l1, b[i] = l1, i, 1
while s in b:
b.pop(s)
s += 1
if i == n:
A251411_list.append(n)
break
i += 1 # Chai Wah Wu, Dec 03 2014
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 02 2014
STATUS
approved