login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251411 Numbers n such that A098550(n) = n. 3
1, 2, 3, 4, 12, 50, 86 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

There is a strong conjecture that there are no further terms. See the discussion in the comments in A098550.

REFERENCES

L. Edson Jeffery, Posting to Sequence Fans Mailing List, Nov 30 2014.

LINKS

Table of n, a(n) for n=1..7.

Hans Havermann, Loops and unresolved chains for map n -> A098550(n) trajectories

David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.

MATHEMATICA

max = 100;

f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]];

A098550 = Nest[f, {1, 2, 3}, max - 3];

Select[Transpose[{Range[max], A098550}], #[[1]] == #[[2]]&][[All, 1]] (* Jean-Fran├žois Alcover, Sep 05 2018, after Robert G. Wilson v in A098550 *)

PROG

(Python)

from fractions import gcd

A251411_list, l1, l2, s, b = [1, 2, 3], 3, 2, 4, {}

for n in range(4, 10**4):

....i = s

....while True:

........if not i in b and gcd(i, l1) == 1 and gcd(i, l2) > 1:

............l2, l1, b[i] = l1, i, 1

............while s in b:

................b.pop(s)

................s += 1

............if i == n:

................A251411_list.append(n)

............break

........i += 1 # Chai Wah Wu, Dec 03 2014

CROSSREFS

Cf. A098550, A251412, A251556.

Sequence in context: A053350 A165302 A276530 * A117342 A303385 A126129

Adjacent sequences:  A251408 A251409 A251410 * A251412 A251413 A251414

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 14:51 EDT 2018. Contains 316489 sequences. (Running on oeis4.)