login
A249716
The least nonsquarefree number on row n of Pascal's triangle, or 1 if all the terms on that row are squarefree.
5
1, 1, 1, 1, 4, 1, 20, 1, 8, 9, 45, 1, 12, 1287, 364, 6435, 16, 136, 18, 171, 20, 5985, 1540, 1, 24, 25, 325, 27, 28, 3654, 4060, 169911, 32, 528, 5984, 52360, 36, 666, 8436, 82251, 40, 820, 11480, 145008513, 44, 45, 1035, 12551759587422, 48, 49, 50, 1275, 52, 292825, 54, 1485, 56, 1596, 30856, 45057474, 60, 55525372, 37820, 63, 64, 2080
OFFSET
0,5
COMMENTS
After a(0) = 1, A048278 gives the positions of seven other ones in the sequence.
LINKS
FORMULA
a(n) = binomial(n, A249442(n)).
EXAMPLE
Binomial coefficients First squarefree a(n)
A007318 occurs at index? =
----------------------------------------------------------------------------
Row 0 1 no squarefrees 1 (by definition)
Row 1 1 1 no squarefrees 1
Row 2 1 2 1 no squarefrees 1
Row 3 1 3 3 1 no squarefrees 1
Row 4 1 4 6 4 1 1 4
Row 5 1 5 10 10 5 1 no squarefrees 1
Row 6 1 6 15 20 15 6 1 3 20
PROG
(PARI)
A249716(n) = { my(b); for(k=0, n\2, if(0==moebius(b=binomial(n, k)), return(b))); return(1); }
for(n=0, 10000, write("b249716.txt", n, " ", A249716(n)));
(Scheme) (define (A249716 n) (A007318tr n (A249442 n)))
CROSSREFS
A249717 and A249718 give the smallest and the largest prime whose square divides these numbers.
Sequence in context: A141233 A055139 A349708 * A333273 A128041 A144885
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 04 2014
STATUS
approved