login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248572
a(n) = 29*n + 1.
1
1, 30, 59, 88, 117, 146, 175, 204, 233, 262, 291, 320, 349, 378, 407, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1277, 1306, 1335, 1364, 1393, 1422
OFFSET
0,2
COMMENTS
Numbers congruent to 1 mod 29.
Both A141977 and A059256 give the primes in this sequence.
FORMULA
a(n) = 29*n + 1.
G.f.: (1+28*x)/(1-x)^2. - Vincenzo Librandi, Oct 26 2014 [corrected by Georg Fischer, May 24 2019]
E.g.f.: (1 + 29*x)*exp(x). - G. C. Greubel, May 24 2019
EXAMPLE
For n = 5, 29n + 1 = 145 + 1 = 146.
MATHEMATICA
29Range[0, 60] + 1 (* Alonso del Arte, Oct 09 2014 *)
CoefficientList[Series[(1+28x)/(1-x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 26 2014 *)
LinearRecurrence[{2, -1}, {1, 30}, 50] (* Harvey P. Dale, Oct 08 2019 *)
PROG
(Python)
for n in range(61):
print(29*n+1, end=', ')
(PARI) vector(60, n, n--; 29*n+1) \\ Derek Orr, Oct 08 2014
(Magma) [29*n+1: n in [0..60]]; // Vincenzo Librandi, Oct 26 2014
(Sage) [29*n+1 for n in (0..60)] # G. C. Greubel, May 24 2019
(GAP) List([0..60], n-> 29*n+1); # G. C. Greubel, May 24 2019
CROSSREFS
Cf. A141977 (Primes congruent to 1 mod 29).
Cf. A059256 (Primes p such that x^29 = 2 has no solution mod p).
Cf. A195819 (multiples of 29).
Sequence in context: A048451 A154796 A350316 * A248739 A004962 A271744
KEYWORD
nonn,easy
AUTHOR
Karl V. Keller, Jr., Oct 08 2014
STATUS
approved