login
A154796
Even partition numbers of odd numbers.
8
30, 56, 176, 490, 792, 1958, 3010, 6842, 89134, 124754, 451276, 614154, 831820, 2012558, 8118264, 13848650, 133230930, 214481126, 271248950, 541946240, 851376628, 1327710076, 3163127352, 4835271870, 5964539504, 7346629512
OFFSET
1,1
COMMENTS
Even numbers in A058695.
LINKS
EXAMPLE
The even number 30 is in the sequence as the partition number of the odd number 9. - Emeric Deutsch, Aug 02 2009
MAPLE
aa:= proc(n, i) if n=0 then 1 elif n<0 or i=0 then 0 else aa(n, i):= aa(n, i-1) +aa(n-i, i) fi end: a:= proc(n) local k; if n>1 then a(n-1) fi; for k from `if`(n=1, 1, b(n-1)+2) by 2 while irem(aa(k, k), 2)=1 do od; b(n):= k; aa(k, k) end: seq(a(n), n=1..40); # Alois P. Heinz, Jul 28 2009
with(combinat): a := proc (n) if `mod`(numbpart(2*n-1), 2) = 0 then numbpart(2*n-1) else end if end proc: seq(a(n), n = 1 .. 70); # Emeric Deutsch, Aug 02 2009
MATHEMATICA
Reap[Do[If[EvenQ[p = PartitionsP[n]], Sow[p]], {n, 1, 199, 2}]][[2, 1]] (* Jean-François Alcover, Nov 11 2015 *)
Select[PartitionsP[Range[1, 201, 2]], EvenQ] (* Harvey P. Dale, Apr 03 2019 *)
PROG
(PARI) lista(nn) = for (n=1, nn, if (((p = numbpart(2*n+1)) % 2) == 0, print1(p, ", "))); \\ Michel Marcus, Dec 19 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 26 2009
EXTENSIONS
More terms from Alois P. Heinz, Jul 28 2009
STATUS
approved