login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248080
Decimal expansion of P_0(xi), the maximum limiting probability that a random n-permutation has no cycle exceeding a given length.
1
0, 9, 8, 7, 1, 1, 7, 5, 4, 4, 8, 0, 7, 1, 4, 6, 9, 2, 4, 9, 3, 7, 2, 1, 3, 0, 8, 2, 3, 7, 0, 2, 0, 6, 7, 9, 9, 3, 3, 3, 3, 3, 3, 5, 4, 7, 8, 0, 8, 4, 4, 0, 0, 0, 2, 5, 6, 6, 9, 7, 9, 0, 8, 3, 6, 2, 2, 5, 2, 5, 3, 6, 4, 2, 7, 4, 0, 6, 3, 0, 1, 5, 8, 6, 2, 6, 3, 0, 0, 2, 1, 5, 7, 5, 9, 2, 4, 5, 4, 6, 1, 6
OFFSET
0,2
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 29.
Michael Lugo, The number of cycles of specified normalized length in permutations, arXiv:0909.2909 [math.CO], 2009.
FORMULA
(1/2)*log(1 + sqrt(e))^2 - log(1 + sqrt(e)) + Li_2(1/(1 + sqrt(e))) - Pi^2/12 + 1.
EXAMPLE
0.098711754480714692493721308237020679933333354780844...
MATHEMATICA
xi = 1/(1 + Sqrt[E]); P0[x_] := Log[x]^2/2 + Log[x] + PolyLog[2, x] - Pi^2/12 + 1; Join[{0}, RealDigits[P0[xi], 10, 101] // First]
PROG
(Python)
from mpmath import *
mp.dps=102
xi=1/(1 + sqrt(e))
C = log(xi)**2/2 + log(xi) + polylog(2, xi) - pi**2/12 + 1
print([int(n) for n in list(str(C)[2:-1])]) # Indranil Ghosh, Jul 04 2017
CROSSREFS
Sequence in context: A129269 A094145 A002388 * A278828 A334448 A011116
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved