login
A248078
a(1) = 1; a(n+1) = a(n) + product of digits of a(n) + sum of digits of a(n).
1
1, 3, 9, 27, 50, 55, 90, 99, 198, 288, 434, 493, 617, 673, 815, 869, 1324, 1358, 1495, 1694, 1930, 1943, 2068, 2084, 2098, 2117, 2142, 2167, 2267, 2452, 2545, 2761, 2861, 2974, 3500, 3508, 3524, 3658, 4400, 4408, 4424, 4566, 5307, 5322, 5394, 5955, 7104, 7116
OFFSET
1,2
COMMENTS
Unlike A063108, this sequence includes in its formula the digit 0 in the product of digits of a(n).
LINKS
EXAMPLE
Given a(5)=50, then a(6)=50+(5+0)+(5*0)=55.
MAPLE
f:= proc(x) local L;
L:= convert(x, base, 10);
x + convert(L, `+`)+convert(L, `*`)
end proc:
A[1]:= 1:
for n from 2 to 100 do A[n]:= f(A[n-1]) od:
seq(A[i], i=1..100); # Robert Israel, Jun 25 2019
MATHEMATICA
NestList[#+Total[IntegerDigits[#]]+Times@@IntegerDigits[#]&, 1, 50] (* Harvey P. Dale, Sep 11 2019 *)
PROG
(PARI) lista(nn) = {prev = 1; print1(prev, ", "); for (n=1, nn, d = digits(prev); prev += sumdigits(prev) + prod(k=1, #d, d[k]); print1(prev, ", "); ); } \\ Michel Marcus, Oct 01 2014
CROSSREFS
Sequence in context: A116475 A337948 A163791 * A057829 A181047 A014948
KEYWORD
nonn,base,easy,look
AUTHOR
Gil Broussard, Sep 30 2014
STATUS
approved