login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246062
G.f.: sqrt( (1 + sqrt(1+8*x)) / (1 + sqrt(1-8*x)) ).
3
1, 2, 2, 28, 54, 860, 2004, 33720, 86054, 1492908, 4019452, 71101832, 198310460, 3555617432, 10168382696, 184127171952, 536496907782, 9788598556876, 28937139277804, 531135371147368, 1588378827366868, 29295861148032584, 88439788292856856, 1637711104368641552
OFFSET
0,2
COMMENTS
Unsigned version of A193618.
LINKS
FORMULA
G.f.: sqrt( C(2*x)/C(-2*x) ) where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
G.f.: exp( Sum_{n>=1} binomial(4*n-2,2*n-1)/2 * (2*x)^(2*n-1)/(2*n-1) ).
G.f. satisfies: A(x)*A(-x) = 1.
a(n) ~ sqrt(sqrt(2)-1)*(1+sqrt(2)-(-1)^n) * 2^(3*n-2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 25 2014
EXAMPLE
G.f.: A(x) = 1 + 2*x + 2*x^2 + 28*x^3 + 54*x^4 + 860*x^5 + 2004*x^6 +...
MATHEMATICA
CoefficientList[Series[Sqrt[(1 + Sqrt[1 + 8*x])/(1 + Sqrt[1 - 8*x])], {x, 0, 20}], x] (* Vaclav Kotesovec, Aug 25 2014 *)
PROG
(PARI) {a(n)=polcoeff( sqrt((1+sqrt(1+8*x +O(x^(n+2))))/(1+sqrt(1-8*x +O(x^(n+2))))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A125067 A369755 A193618 * A178955 A012000 A116091
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2014
STATUS
approved