login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246061
Decimal expansion of lim_{n->infinity} ((1/log(n)^2)*Product_{2 < p < n, p prime} p/(p-2)).
1
1, 2, 0, 1, 3, 0, 3, 5, 5, 9, 9, 6, 7, 3, 6, 2, 2, 4, 1, 2, 4, 7, 5, 5, 5, 9, 5, 9, 2, 0, 7, 3, 8, 3, 4, 8, 2, 4, 5, 3, 8, 3, 8, 4, 4, 9, 4, 2, 7, 1, 1, 3, 0, 8, 5, 1, 8, 1, 9, 5, 5, 9, 7, 4, 1, 4, 8, 0, 0, 9, 9, 7, 7, 9, 4, 3, 7, 7, 5, 2, 2, 5, 9, 6, 7, 0, 6, 4, 3, 1, 8, 4, 8, 6, 1, 9, 7, 6, 0, 8, 8
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood constants, p. 86.
LINKS
FORMULA
Equals exp(2*EulerGamma)/(4*C_2), where C_2 is the twin primes constant A005597.
EXAMPLE
1.201303559967362241247555959207383482453838449427113...
MATHEMATICA
digits = 101; s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 60]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, digits + 60}]; RealDigits[Exp[2*EulerGamma]/(4*C2), 10, digits] // First
CROSSREFS
Cf. A005597.
Sequence in context: A172026 A296046 A060318 * A263730 A331533 A089994
KEYWORD
nonn,cons
AUTHOR
STATUS
approved