login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245769 a(n) = Sum_{k=0..n} C(n, k)*C(n+k, k)/(2k-1), where C(n, k) denotes the binomial coefficient n!/(k!*(n-k)!). 8
-1, 1, 7, 25, 87, 329, 1359, 6001, 27759, 132689, 649815, 3242377, 16421831, 84196761, 436129183, 2278835681, 11996748255, 63568974241, 338777252263, 1814623238137, 9763917858359, 52750451120361, 286036294786287, 1556185889290065, 8492182185653327, 46471113779766769 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Note that a(n) is always an integer since C(n,k)*C(n+k,k) = C(n+k,2k)*C(2k,k), and C(2k,k)/(2k-1) = 2*Catalan(k-1) for k > 0.

Conjecture: The sequence a(n+1)/a(n) (n = 3,4,...) is strictly increasing to the limit 3+2*sqrt(2), and the sequence a(n+1)^(1/(n+1))/a(n)^(1/n) (n = 5,6,...) is strictly decreasing to the limit 1.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 0..200

Victor J. W. Guo, and Ji-Cai Liu, Proof of a conjecture of Z.-W. Sun on the divisibility of a triple sum, Journal of Number Theory, Volume 156, November 2015, Pages 154-160. Rn is a(n).

Zhi-Wei Sun, A new kind of numbers and their arithmetic properties, arXiv:1408.5381 [math.NT], 2017.

FORMULA

Recurrence (obtained via the Zeilberger algorithm): (n+1)*a(n) - (7*n+15)*a(n+1) + (7*n+13)*a(n+2) - (n+3)*a(n+3) = 0.

a(n) ~ A006318(n)/2 as n tends to the infinity, thus a(n)^(1/n) has the limit 3+2*sqrt(2).

0 = +a(n)*(+a(n+1) -15*a(n+2) +13*a(n+3) -3*a(n+4)) +a(n+1)*(+a(n+1) +50*a(n+2) -34*a(n+3) +13*a(n+4)) +a(n+2)*(-63*a(n+2) +50*a(n+3) -15*a(n+4)) +a(n+3)*(+a(n+3) +a(n+4)) for all n in Z. - Michael Somos, Aug 24 2014

EXAMPLE

a(2) = 7 since sum_{k=0,1,2}C(2,k)*C(2+k,k)/(2k-1) = -1 + 6 + 6/3 = 7.

MATHEMATICA

a[n_]:=Sum[Binomial[n, k]Binomial[n+k, k]/(2k-1), {k, 0, n}]; Table[a[n], {n, 0, 25}]

PROG

(PARI) for(n=0, 25, print1(sum(k=0, n, binomial(n, k)*binomial(n+k, k)/(2*k -1)), ", ")) \\ G. C. Greubel, Aug 05 2018

(Magma) [(&+[Binomial(n, k)*Binomial(n+k, k)/(2*k-1): k in [0..n]]): n in [0..25]]; // G. C. Greubel, Aug 05 2018

CROSSREFS

Cf. A000108, A006318.

Sequence in context: A155233 A183914 A279216 * A146933 A155258 A261722

Adjacent sequences: A245766 A245767 A245768 * A245770 A245771 A245772

KEYWORD

sign

AUTHOR

Zhi-Wei Sun, Aug 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 22:56 EST 2022. Contains 358406 sequences. (Running on oeis4.)