login
A243257
Decimal expansion of a constant related to the asymptotic expansion of the Lebesgue constant corresponding to the n-th Chebyshev polynomial.
2
9, 6, 2, 5, 2, 2, 8, 2, 6, 7, 6, 0, 7, 1, 3, 0, 0, 7, 7, 9, 8, 1, 3, 2, 0, 6, 8, 3, 6, 3, 1, 7, 3, 6, 8, 3, 7, 6, 7, 2, 4, 1, 5, 3, 6, 4, 2, 3, 2, 8, 6, 5, 7, 1, 4, 3, 0, 5, 8, 9, 7, 9, 8, 5, 1, 9, 3, 8, 5, 5, 2, 6, 1, 7, 1, 1, 6, 6, 0, 7, 1, 5, 5, 9, 7, 2, 5, 0, 8, 6, 2, 2, 9, 8, 8, 0, 9, 6, 1, 3, 7, 4
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.2 Lebesgue constants, p. 253.
FORMULA
Equals 2/Pi*(3*log(2) - log(Pi) + gamma), where gamma is the Euler-Mascheroni constant.
EXAMPLE
0.96252282676071300779813206836317368376724153642328657143...
MATHEMATICA
RealDigits[2/Pi*(3*Log[2] - Log[Pi] + EulerGamma), 10, 102] // First
PROG
(PARI) default(realprecision, 100); (2/Pi)*(3*log(2) - log(Pi) + Euler) \\ G. C. Greubel, Sep 04 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (2/Pi(R))*(3*Log(2) - Log(Pi(R)) + EulerGamma(R)); // G. C. Greubel, Sep 04 2018
CROSSREFS
Sequence in context: A011219 A202543 A188528 * A194182 A019961 A327996
KEYWORD
nonn,cons
AUTHOR
STATUS
approved