OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k=0..n-1} (binomial(2*k,k)*Sum_{j=0..n} (binomial(j,-n-k+2*j-1)*binomial(n,j)))/n, n>0, a(0)=0.
A(x) satisfies A(x)=x*(1+A(x)-2*A(x)^3+A(x)^4)/(1-A(x)).
a(n) ~ 3^n * 7^(n+1/2) / (sqrt(5*Pi) * n^(3/2) * 4^(n+1)). - Vaclav Kotesovec, Jun 02 2014
Conjecture D-finite with recurrence: 2*n*(2*n+1)*a(n) + (-65*n^2+119*n-42)*a(n-1) + 3*(97*n^2-373*n+342)*a(n-2) - 9*(23*n-68)*(n-3)*a(n-3) - 567*(n-3)*(n-4)*a(n-4) = 0. - R. J. Mathar, Jul 15 2017
MATHEMATICA
CoefficientList[Series[1/2 - (Sqrt[(2*Sqrt[-3*x^2-2*x+1]+3*x-2)/x])/2, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 02 2014 *)
PROG
(Maxima)
a(n):=sum(binomial(2*k, k)*sum(binomial(j, -n-k+2*j-1)*binomial(n, j), j, 0, n), k, 0, n-1)/n;
(PARI) x='x+O('x^30); concat([0], Vec(1/2-1/2*(sqrt((2*sqrt(-3*x^2 -2*x+1)+3*x-2)/x)))) \\ G. C. Greubel, Oct 06 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!(1/2-1/2*(Sqrt((2*Sqrt(-3*x^2-2*x+1)+3*x-2)/x)))); // G. C. Greubel, Oct 06 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jun 01 2014
STATUS
approved